一、什么是线段树
为什么要使用线段树
- 最经典的线段树问题:区间染色
- 另一类经典问题:区间查询
- 总结:以上例子都可以使用数组实现:
- 更新
- 使用数组实现
- O(n)
- 使用线段树实现
- O(logn)
- 使用数组实现
- 查询
- 使用数组实现
- O(n)
- 使用线段树实现
- O(logn)
- 使用数组实现
- 更新
线段树的力量
二、线段树基础表示
- 如果区间有n个元素 数组表示需要有多少节点?
- 需要 4n 的空间
- 我们的线段树不考虑添加元素,即区间固定
- 使用 4n 的静态空间即可
初步实现
import java.util.Objects;
/**
* @author DBC
* @version 1.0
* @date 2022-02-15 21:25
*/
public class SegmentTree<E> {
private E[] tree;
private E[] data;
public SegmentTree(E[] arr) {
data = (E[]) new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[]) new Object[4 * arr.length];
}
public int getSize() {
return data.length;
}
public E get(int index) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("Index is illegal.");
}
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return 2 * index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return 2 * index + 2;
}
} 三、创建线段树
package SegmentTree;
import java.util.Objects;
/**
* @author DBC
* @version 1.0
* @date 2022-02-15 21:25
*/
public class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[]) new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[]) new Object[4 * arr.length];
buildSegmentTree(0, 0, data.length - 1);
}
// 在treeIndex的位置创建表示区间 [ l...r ]的线段树
private void buildSegmentTree(int treeIndex, int l, int r) {
if (l == r) {
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeindex = rightChild(treeIndex);
int mid = l + (r - l) / 2; //可以避免两个相加过大 导致的整形溢出
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeindex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeindex]);
}
public int getSize() {
return data.length;
}
public E get(int index) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("Index is illegal.");
}
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index) {
return 2 * index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index) {
return 2 * index + 2;
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append("[");
for (int i = 0; i < tree.length; i++) {
if (tree[i] != null) {
res.append(tree[i]);
} else {
res.append("null");
}
if (i != tree.length - 1) {
res.append(", ");
}
}
res.append("]");
return res.toString();
}
}
package SegmentTree;
/**
* @author DBC
* @version 1.0
* @date 2022-02-15 21:41
*/
public interface Merger<E> {
E merge(E a, E b);
}
测试一下
/**
* @author DBC
* @version 1.0
* @date 2022-02-15 21:44
*/
public class Main {
public static void main(String[] args) {
Integer[] nums = {-2, 0, 3, -5, 2, -1};
SegmentTree<Integer> segTree = new SegmentTree<Integer>(nums, new Merger<Integer>() {
@Override
public Integer merge(Integer a, Integer b) {
return a + b;
}
});
SegmentTree<Integer> segTree2 = new SegmentTree<Integer>(nums, (a, b) -> a + b);
System.out.println(segTree);
System.out.println(segTree2);
}
}
四、线段树中的区间查询
关键代码
// 返回区间 [ queryL , queryR ] 的值
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR) {
throw new IllegalArgumentException("Index is illegal");
}
return query(0, 0, data.length - 1, queryL, queryR);
}
// 在以treeID为根的线段树中 [l...r]的范围里,搜索区间 [queryL ... queryR] 的值
public E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (queryL >= mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
} else if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult,rightResult);
} 、
测试一下
/**
* @author DBC
* @version 1.0
* @date 2022-02-15 21:44
*/
public class Main {
public static void main(String[] args) {
Integer[] nums = {-2, 0, 3, -5, 2, -1};
// SegmentTree<Integer> segTree = new SegmentTree<Integer>(nums, new Merger<Integer>() {
// @Override
// public Integer merge(Integer a, Integer b) {
// return a + b;
// }
// });
SegmentTree<Integer> segTree2 = new SegmentTree<Integer>(nums, (a, b) -> a + b);
System.out.println(segTree2.query(0,1));
System.out.println(segTree2.query(2,5));
System.out.println(segTree2.query(0,5));
// System.out.println(segTree2);
}
}
五、Leetcode上线段树相关的问题
class NumArray {
public interface Merger<E> {
E merge(E a, E b);
}
public class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[]) new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[]) new Object[4 * arr.length];
buildSegmentTree(0, 0, data.length - 1);
}
// 在treeIndex的位置创建表示区间 [ l...r ]的线段树
private void buildSegmentTree(int treeIndex, int l, int r) {
if (l == r) {
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeindex = rightChild(treeIndex);
int mid = l + (r - l) / 2; //可以避免两个相加过大 导致的整形溢出
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeindex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeindex]);
}
public int getSize() {
return data.length;
}
public E get(int index) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("Index is illegal.");
}
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index) {
return 2 * index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index) {
return 2 * index + 2;
}
// 返回区间 [ queryL , queryR ] 的值
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR) {
throw new IllegalArgumentException("Index is illegal");
}
return query(0, 0, data.length - 1, queryL, queryR);
}
// 在以treeID为根的线段树中 [l...r]的范围里,搜索区间 [queryL ... queryR] 的值
public E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (queryL >= mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
} else if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult,rightResult);
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append("[");
for (int i = 0; i < tree.length; i++) {
if (tree[i] != null) {
res.append(tree[i]);
} else {
res.append("null");
}
if (i != tree.length - 1) {
res.append(", ");
}
}
res.append("]");
return res.toString();
}
}
private SegmentTree<Integer> segmentTree;
public NumArray(int[] nums) {
if (nums.length > 0) {
Integer[] data = new Integer[nums.length];
for (int i = 0; i < nums.length; i++) {
data[i] = nums[i];
}
segmentTree = new SegmentTree<Integer>(data, (a, b) -> a + b);
}
}
int sumRange(int left, int right) {
if (segmentTree == null) {
throw new IllegalArgumentException("Segment Tree is null");
}
return segmentTree.query(left, right);
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(left,right);
*/ 换一种方式实现
/**
* @author DBC
* @version 1.0
* @date 2022-02-16 21:33
*/
public class NumArray2 {
private int[] sum; // sum[i]存储前i个元素和,sum[0] = 0
// sum[i]存储nums[0...i-1]的和
public NumArray2(int[] nums) {
sum = new int[nums.length+1];
sum[0] = 0;
for (int i=1;i<sum.length;i++){
sum[i] = sum[i-1] + nums[i-1];
}
}
public int sumRange(int i, int j) {
return sum[j+1] - sum[i];
}
}
本文作者为DBC,转载请注明。







