一、什么是线段树
为什么要使用线段树
- 最经典的线段树问题:区间染色
- 另一类经典问题:区间查询
- 总结:以上例子都可以使用数组实现:
- 更新
- 使用数组实现
- O(n)
- 使用线段树实现
- O(logn)
- 使用数组实现
- 查询
- 使用数组实现
- O(n)
- 使用线段树实现
- O(logn)
- 使用数组实现
- 更新
线段树的力量
二、线段树基础表示
- 如果区间有n个元素 数组表示需要有多少节点?
- 需要 4n 的空间
- 我们的线段树不考虑添加元素,即区间固定
- 使用 4n 的静态空间即可
初步实现
import java.util.Objects; /** * @author DBC * @version 1.0 * @date 2022-02-15 21:25 */ public class SegmentTree<E> { private E[] tree; private E[] data; public SegmentTree(E[] arr) { data = (E[]) new Object[arr.length]; for (int i = 0; i < arr.length; i++) { data[i] = arr[i]; } tree = (E[]) new Object[4 * arr.length]; } public int getSize() { return data.length; } public E get(int index) { if (index < 0 || index >= data.length) { throw new IllegalArgumentException("Index is illegal."); } return data[index]; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引 private int leftChild(int index){ return 2 * index + 1; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引 private int rightChild(int index){ return 2 * index + 2; } }
三、创建线段树
package SegmentTree; import java.util.Objects; /** * @author DBC * @version 1.0 * @date 2022-02-15 21:25 */ public class SegmentTree<E> { private E[] tree; private E[] data; private Merger<E> merger; public SegmentTree(E[] arr, Merger<E> merger) { this.merger = merger; data = (E[]) new Object[arr.length]; for (int i = 0; i < arr.length; i++) { data[i] = arr[i]; } tree = (E[]) new Object[4 * arr.length]; buildSegmentTree(0, 0, data.length - 1); } // 在treeIndex的位置创建表示区间 [ l...r ]的线段树 private void buildSegmentTree(int treeIndex, int l, int r) { if (l == r) { tree[treeIndex] = data[l]; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeindex = rightChild(treeIndex); int mid = l + (r - l) / 2; //可以避免两个相加过大 导致的整形溢出 buildSegmentTree(leftTreeIndex, l, mid); buildSegmentTree(rightTreeindex, mid + 1, r); tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeindex]); } public int getSize() { return data.length; } public E get(int index) { if (index < 0 || index >= data.length) { throw new IllegalArgumentException("Index is illegal."); } return data[index]; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引 private int leftChild(int index) { return 2 * index + 1; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引 private int rightChild(int index) { return 2 * index + 2; } @Override public String toString() { StringBuilder res = new StringBuilder(); res.append("["); for (int i = 0; i < tree.length; i++) { if (tree[i] != null) { res.append(tree[i]); } else { res.append("null"); } if (i != tree.length - 1) { res.append(", "); } } res.append("]"); return res.toString(); } }
package SegmentTree; /** * @author DBC * @version 1.0 * @date 2022-02-15 21:41 */ public interface Merger<E> { E merge(E a, E b); }
测试一下
/** * @author DBC * @version 1.0 * @date 2022-02-15 21:44 */ public class Main { public static void main(String[] args) { Integer[] nums = {-2, 0, 3, -5, 2, -1}; SegmentTree<Integer> segTree = new SegmentTree<Integer>(nums, new Merger<Integer>() { @Override public Integer merge(Integer a, Integer b) { return a + b; } }); SegmentTree<Integer> segTree2 = new SegmentTree<Integer>(nums, (a, b) -> a + b); System.out.println(segTree); System.out.println(segTree2); } }
四、线段树中的区间查询
关键代码
// 返回区间 [ queryL , queryR ] 的值 public E query(int queryL, int queryR) { if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR) { throw new IllegalArgumentException("Index is illegal"); } return query(0, 0, data.length - 1, queryL, queryR); } // 在以treeID为根的线段树中 [l...r]的范围里,搜索区间 [queryL ... queryR] 的值 public E query(int treeIndex, int l, int r, int queryL, int queryR) { if (l == queryL && r == queryR) { return tree[treeIndex]; } int mid = l + (r - l) / 2; int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); if (queryL >= mid + 1) { return query(rightTreeIndex, mid + 1, r, queryL, queryR); } else if (queryR <= mid) { return query(leftTreeIndex, l, mid, queryL, queryR); } E leftResult = query(leftTreeIndex, l, mid, queryL, mid); E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR); return merger.merge(leftResult,rightResult); }
、
测试一下
/** * @author DBC * @version 1.0 * @date 2022-02-15 21:44 */ public class Main { public static void main(String[] args) { Integer[] nums = {-2, 0, 3, -5, 2, -1}; // SegmentTree<Integer> segTree = new SegmentTree<Integer>(nums, new Merger<Integer>() { // @Override // public Integer merge(Integer a, Integer b) { // return a + b; // } // }); SegmentTree<Integer> segTree2 = new SegmentTree<Integer>(nums, (a, b) -> a + b); System.out.println(segTree2.query(0,1)); System.out.println(segTree2.query(2,5)); System.out.println(segTree2.query(0,5)); // System.out.println(segTree2); } }
五、Leetcode上线段树相关的问题
class NumArray { public interface Merger<E> { E merge(E a, E b); } public class SegmentTree<E> { private E[] tree; private E[] data; private Merger<E> merger; public SegmentTree(E[] arr, Merger<E> merger) { this.merger = merger; data = (E[]) new Object[arr.length]; for (int i = 0; i < arr.length; i++) { data[i] = arr[i]; } tree = (E[]) new Object[4 * arr.length]; buildSegmentTree(0, 0, data.length - 1); } // 在treeIndex的位置创建表示区间 [ l...r ]的线段树 private void buildSegmentTree(int treeIndex, int l, int r) { if (l == r) { tree[treeIndex] = data[l]; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeindex = rightChild(treeIndex); int mid = l + (r - l) / 2; //可以避免两个相加过大 导致的整形溢出 buildSegmentTree(leftTreeIndex, l, mid); buildSegmentTree(rightTreeindex, mid + 1, r); tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeindex]); } public int getSize() { return data.length; } public E get(int index) { if (index < 0 || index >= data.length) { throw new IllegalArgumentException("Index is illegal."); } return data[index]; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引 private int leftChild(int index) { return 2 * index + 1; } // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引 private int rightChild(int index) { return 2 * index + 2; } // 返回区间 [ queryL , queryR ] 的值 public E query(int queryL, int queryR) { if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR) { throw new IllegalArgumentException("Index is illegal"); } return query(0, 0, data.length - 1, queryL, queryR); } // 在以treeID为根的线段树中 [l...r]的范围里,搜索区间 [queryL ... queryR] 的值 public E query(int treeIndex, int l, int r, int queryL, int queryR) { if (l == queryL && r == queryR) { return tree[treeIndex]; } int mid = l + (r - l) / 2; int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); if (queryL >= mid + 1) { return query(rightTreeIndex, mid + 1, r, queryL, queryR); } else if (queryR <= mid) { return query(leftTreeIndex, l, mid, queryL, queryR); } E leftResult = query(leftTreeIndex, l, mid, queryL, mid); E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR); return merger.merge(leftResult,rightResult); } @Override public String toString() { StringBuilder res = new StringBuilder(); res.append("["); for (int i = 0; i < tree.length; i++) { if (tree[i] != null) { res.append(tree[i]); } else { res.append("null"); } if (i != tree.length - 1) { res.append(", "); } } res.append("]"); return res.toString(); } } private SegmentTree<Integer> segmentTree; public NumArray(int[] nums) { if (nums.length > 0) { Integer[] data = new Integer[nums.length]; for (int i = 0; i < nums.length; i++) { data[i] = nums[i]; } segmentTree = new SegmentTree<Integer>(data, (a, b) -> a + b); } } int sumRange(int left, int right) { if (segmentTree == null) { throw new IllegalArgumentException("Segment Tree is null"); } return segmentTree.query(left, right); } } /** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * int param_1 = obj.sumRange(left,right); */
换一种方式实现
/** * @author DBC * @version 1.0 * @date 2022-02-16 21:33 */ public class NumArray2 { private int[] sum; // sum[i]存储前i个元素和,sum[0] = 0 // sum[i]存储nums[0...i-1]的和 public NumArray2(int[] nums) { sum = new int[nums.length+1]; sum[0] = 0; for (int i=1;i<sum.length;i++){ sum[i] = sum[i-1] + nums[i-1]; } } public int sumRange(int i, int j) { return sum[j+1] - sum[i]; } }
本文作者为DBC,转载请注明。